Seat	Number	

DAGDU-19

BP-304T

Pharmaceutical Engineering

(723304)

Total Pages: 7] Time: 3 Hours

Max. Marks: 75

- Note : (1) All questions are compulsory.
 - Do not write anything on question paper except Seat No. (2)
 - (3) No supplement will be provided.
 - Figures to the right indicate full marks. (4)
 - Draw well labelled diagram wherever necessary. (5)
- Multiple choice questions:

- (i) If Reynolds number, Re < 2000, Indicates flow is :
 - (a) Laminar
 - (5) Turbulent
 - (0) Transient
 - All the above
- The fineness of product in hammer mill is regulated by altering : (ii)
 - (a) Feed rate
 - (5) Rotor speed
 - (c) Clearance between hammers and grinding plate
 - (d) All the above

(iii)	Size reduction is also known as:
	(a) Segregation
	(b) Compaction
	(c) Commination
	(d) Separation
(iv)	The process of transfer of thermal energy from hot places to cold places
	by mixing of warmer with cooler portion of same material.
	(a) Conduction
	(b) Evaporation
	(c) Radiation
*	(d) Convection
(v)	Bernoulli's theorem deals with law of conservation of:
	(a) Energy
	b) Mass
(c) Volume
(4	d) Momentum
(vi) V	When the flow is whether viscous or turbulent, which equation is used
te	o calculate friction loss ?
(6	ı) Bernoulli's
(6	Fanning equation
(0	Stokes law
• (d	() Hagen Poiseuille
DAGDU-1	9 2

	(a)	Time				
(viii)	Size	separation is also known as :				
	(a)	Pulverization				
	(b)	Diminutions				
	(c)	Blending				
	• (d)	Sifting				
. (ix)	Whi	ch of the following is not type	of manomet	er ?		
	(a)	V-tube				
	, (b)	Piezometer				
	(c)	U-tube				
	(<i>d</i>)	Single column manometer				
(x)	Ball	Mill is used for :				
	(a)	Very fine grinding				
	(b)	Attrition				
	(c)	Coarse grinding				
	• (d)	Both (a) and (c)				
DAGD	TT 10	3			P.T.O.	
DAGD	0-10					

To Stefan-Boltzmann Law, energy radiated is proportional to :

Fourth power of absolute temperature

Absolute temperature

Pressure

(vii)

• (a)

(b)

(c)

(xi)	Uni	t of the rate of heat transfer is:
	(a)	Joule
	(b)	Newton
	(c)	Pascal
	(d)	Watt
(xii)	Whi	ch type of mixture is easily formed ?
	(a)	Positive
	(b)	Negative
	(c)	Neutral
	(d)	Ampholytic
(xiii)	Mec	hanism not used in solid-solid mixing :
	(a)	Connective
	(b)	Shear mixing
	(c)	Diffusion
	(d)	Tumbling
(xiv)	Mecl	nanism of mixing in sigma blade mixer:
	(a)	Connective
	(b)	Tumbling
	• (c)	Shearing
	(d)	Diffusion
DAGDU	T-19	4

	(c)	Random			
	•(d)	Turbulent			
(xvi)	Degr	ee of mixing is als	so known as :		
	*(a)	Degree of Homog	geneity		
	(b)	Extent of mixing			
	(c)	Ordered mixing			
	(d)	Random mixing			
(xvii)	Mills	s are not suitable	for Friable (heat se	ensitive) materials	:
	(a)	Cutter Mill		4	
	(b)	Hammer Mill			
	(c)	Colloidal Mill			
	, (d)	All the above			
(xviii) Fibr	ous drugs are mil	led by using :		
	(a)	Cutter Mill			
	• (b)	Hammer Mill			
	(c)	Fluid Energy M	fill		
	(d)	Ball Mill			
DAGD	TT 10		5		P.T.O.
DAGD	U-18)	Б		

Mechanism of mixing in silverson mixer is :

Connective

Laminar

(b)

(viv)	Fluid	Energy	Mill	works	on	the	principle	of	
$(x \iota x)$	riuiu	Energy	TATTIT	WOLKS	OII	the	principle	OI	

- (a) Impact and Attrition
- (b) Rotor and Stator
- (c) Compression
- (d) Attrition
- $(\chi\!\chi)$ The bell crank lever arrangement is major part of which of the following :
 - (a) Cyclone separator
 - (b) Edge runner Mill
 - (c) End runner Mill
 - (d) Bag filter
- 2. Attempt any two:

 $2 \times 10 = 20$

- (i) Give a detailed account about principle, construction, working, uses, merits and demerits of sieve shaker.
- (ii) Explain Principle, construction and operational details of Freeze Drying and give its applications also.
- (iii) Categorize types of filters. Describe principle, construction, working of Plate and Frame filter.

DAGDU-19

6

3. Attempt any seven:

 $7 \times 5 = 35$

- (i) Give the construction and working of Shell and tube heater.
- (ii) Write a note on ball mill.
- (iii) Write the properties, applications and disadvantages of iron as material for plant construction.
- (iv) Describe equipment parts and working principle of spray drier.
- (v) Write the construction and working of fluid energy mill.
- (vi) Write the application of mixing and write the working, uses, merits and demerits of double cone blender.
- (vii) Write principle, advantages and limitations of climbing film evaporator.
- (viii) Differentiate between filtration and sedimentation centrifuges.
- (ix) Explain the construction and working of drum filter.

DAGDU-19

7